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Propagation of TE Modes in Nonuniform Waveguides*

H. ZUCKER~, MEMBER, IRE, AND G. I. COHN], SENIOR MEMBER, IRE

Summary—The conditions for TE mode propagation in rec-

tangular waveguides with nonuniform dielectric media are estab-
lished. An equation is derived for determining the capacitivity func-
tions which have equivalent curved waveguides with uniform dielec-
tric media. The types of variable dielectric waveguides which have
equivalent curved wall waveguides and a separable wave equation
are determined.

INTRODUCTION

A

PPLICATION of waveguides loaded with non-

uniform dielectric material that varies in two

dimensions has been limited by fabrication dif-

ficulties. The development of ferroelectric materials

whose properties can be changed with the applica-

tion of a biasing field considerably extends the prac-

tical applications to which nonuniformly loaded wave-

guides may be put. Such waveguides are also of intrinsic

theoretical interest because of the mathematical tech-

niques involved.

Solutions of the wave equations for propagation in

nonuniform dielectric filled waveguides have been ap-

pliedl–5 to determine the propagating fields in uniformly

loaded curved waveguides by using con formal coor-

dinate transformations which transform curved wave-

guides into equivalent straight waveguides. The trans-

formed wave equation is similar to the wave equation

for propagation in a waveguide loaded with dielectric

that varies in two dimensions.

This paper is part of a study concerned with propaga-

tion in nonuniformly loaded rectangular waveguides.

The conditions for independent propagation of TE

modes in such waveguides are determined. An equation

is derived for determining which functional variations of

the capacitivity have equivalent curved guides with uni-
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form dielectric media. The types of equivalent wave-

guides which have a separable wave equation are also

determined, Solutions for the propagating waves in non-

uniformly-loaded straight-wall waveguide (where the

nonuniformity is a function of one dimension only) are

obtained.

A. Conditions for Independent Existence of Transverse

Electric Modes in a Nonuniform Dielectric Loaded Wave-

guide

The problem to be treated, illustrated in Fig. 1, is a

rectangular cross section cylindrical waveguide loaded

with a dielectric that varies in the transverse-x and the

longitudinal-z directions. The treatment is restricted to

the case for which the walls of the waveguide and the

dielectric have negligible loss.

Fig. l—Rectangular waveguide with dielectric that varies in the
longitudinal direction and in one transverse direction.

In the absence of space charge and conduction cur-

rent Maxwell’s induction equations for isotropic media

and for sinusoidal steady-state complex representation

are

VXH=jueE (1)

VXE=–jw@ (2)

where

E and H are the electric and magnetic field intensities,

p and E are the inductivity and capacitivity (may be

functions of the three position coordinates x, y, z).
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u = 2Tj (3)

f = frequency.

Maxwell’s Gaussian equations reduce to

eV. E+ E. Ve=O (4)

PV. H+ H.VP = O. (5)

The problem under consideration is restricted to

homogeneous inductivity, hence (5) reduces to

V.H= O. (6)

Obtaining separate equations for E and H from (1)

and (2), gives

()
VCH + F X (V X H) + ,&2erH = O (7)

c

and

VZE – VV. E + /3v’e,E = O (8)

where ~, is the propagation factor and

b. = Udwve” (9)

and p. and e, are the inductivity and capacitivity of

vacuum, ~. is the relative capacitivity or dielectric

constant.

The conditions for the TE mode propagation are es-

tablished from (8). The z component of (8) is

V~E, – 8Z(V. E) + fiu2erEa = O. (lo)

For TE modes

E. = O. (11)

This TE mode constraint reduces (10) to

dsV. E=O. (12)

Integrating (12) gives

V. E=g(x, y) (13)

where g(x, y) is an arbitrary function of x and y.

For a uniformly loaded guide (4) reduces to

V.EU = 8ZEZ” + C9UEUU= O. (14)

At the junction between the uniform waveguide and

the nonuniform dielectric loaded guide the electric fields

En and EY are the same on both sides of the boundary.

If the fields are identical, so are their transverse deriva-

tives. Therefore, at the junction, at z = zO,

13.E.~ + duEJ’ = O. (15)

Since g(z, y) does not vary with z and is zero at z= Zo, it

is zero throughout the nonuniform dielectric region.

Hence, for a nonuniformly loaded waveguide which is

joined to a uniformly loaded waveguide and excited

from that guide with a TE mode,

g(x, y) = o. (16)

For a TE mode, with g(x, y) zero in (13), (4) reduces to

For all a~ bitrary variations of C(X, y, z) (1’7) can only be

satisfied if E, and EU are individually zero. Thus a TE

mode ca~mot independently exist if the guide is filled

with a dielectric that is an arbitrary function of position.

Nontrivial solutions of (17) can exist only under the

following conditions:

1- I&
=0

or

rl13Zc
– o,—

(18)

(19)

(20)

Conditional equation sets (18) and (19) have already

been derived for TE modes in waveguides where the di-

electric constant varies in the transverse dimension

only. b

Conditional equation set (20) is still satisfied if the

capacitivity varies in the z dimension and according to

(17) neither Ez and E, has to be zero. TE~. modes can

therefore be independently present in a waveguide

where the dielectric medium varies in the z dimension.

The fields in such a waveguide can be obtained in terlms

of a product of three functions which are dependent on

X, Y and z respectively, with the functional dependence

on x anc[ y the same as for uniform waveguides and the

z-dependent function can be obtained in terms of a sec-

ond order differential equation with variable co-

efficients.

In the succeeding sections nonuniform dielectric

loaded waveguides will be considered where the condi-

tional equation set (18) is fulfilled. Under these condi-

tions it follows from Maxwell’s equations that

Hv=o (21)

and from (15) and (18) that

duEV = O. (22)

The conditions specified by (18), (21), and (22) rule

out variation in the y direction; hence, only ‘f’E~~ modes
can be present. With the above conditions the equation

for H, (7), has the y component equal to zero, and the

equation for EU, from (8) reduces to

e K. V. Malinowski and D. J. Angelokos, ‘(Propagation in
Inhomogeneously Filled Waveguides, ” University of California
Institute of Engineering Research, Berkeley, Calif., Ser. No. 60,
Issue No, 125; October, 1954.
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The y component of the electric field satisfies (23), the

simplest equation, of the above set. A solution for Eti,

which satisfies (23) and the boundary conditions, is suf-

ficient since the magnetic fields can be derived from it by

differentiation.

B. Confor?nal Coordinate T~ansfonnation

The partial differential equation (23) can be expressed

in the u, u-coordinate system by the transformation

‘L.l= 2L(3, z) (24)

z{ = 11(%,2) (25)

where U(Z, z) and V(Z, z) are, for the time being, arbi-

trary functions.

Such a transformation generally converts the straight

boundaries of the waveguide at the metal walls into

curved boundaries. For an arbitrary transformation the

resulting partial differential equation in the u and v co-

ordinates would have a form more complex than (23).

However, it is shown subsequently that for certain vari-

ations of the dielectric medium the transformation (if

conformal) will transform the wave equation, (23), into

a wave equation for a waveguide with uniform dielectric.

The difference between the original and the transformed

problem is that the boundaries and the dielectric have

changed. The advantage of this method is that certain

solutions for propagation in curved waveguides with

uniform loading can be used as solutions to correspond-

ing nonuniform dielectric loaded straight wall wave-

guides. This method is the inverse of the method used in

solving certain waveguide problems with curved bound-

aries by transforming conformably the waveguide with

curved boundaries into a waveguide with straight

boundaries and a variable dielectric medium. 1–5

In the new coordinate system the electric field E. is a

function of u and v.

Eu = E,(zL, Z). (26)

If u and v are chosen so that they satisfy the Cauchy -

.Riemann conditions

(?Z2L= d,z’ (27)

dzt’ = – (3ZZL (28)

then

(a.zL)’ + (d,u)’ = (dsv)’ + (a.z’)’ (29)

d@3.v + dzzbd,V = o (30)

(3Zzu + azbz == o (31)

dz’v + d,% = ~. (32)

Using (24) and (25) together with (27) through (32)

transforms (23) to

(&2Eg + d,2Eu) [(Au)’ + (dw)’] + P,>2C,(X, Z’)EU = O. (33)

If u satisfies the partial differential equation

(dzu) ‘ + (d,zi) 2 = E,(Z, z) (34)

then the transformation (24) and (25) reduces (33) to

dU2EU+ dV2EU+ @U2EY= O (35)

which is an equation for wave propagation in a vacuum

filled waveguide. For ~,= O, which corresponds to the

static case, (23) is Laplace’s equation and (35) obtained

by conformal transformation, is also Laplace’s equation.

Partial differential equation, (34), imposes a relation-

ship between the coordinate u and the coordinates x and

y. It follows from (29) that V(X, z) also satisfies (34). The

preliminary cases studied were chosen by picking a co-

ordinate transformation and then finding the corre-

sponding dielectric variation. For a specified dielectric

variation the coordinate transformation is determined

from (34). Eq. (34) is a nonlinear partial differential

equation of the first order which can be reduced to

a set of simultaneous ordinary differential equations of

the first order. However, only specific variations of the

dielectric medium C(X, z) lead to a function which satis-

fies (34) and (31) simultaneously, These types of func-

tions for the dielectric medium are derived in the sub-

sequent section.

C. Partial DiJerential Equation for the Capacitivity

Required in a $itraight- Wall Waveguide having the same

Solation Uniformly Loaded Cwwed Wall Waveguide

The partial differential equation which c,(x, z) must

satisfy if the nonuniform loaded straight wall waveguide

is to have the same solution as the uniformly loaded

curved wall waveguide can be obtained from (31)

and (34).

Differentiating (34) once with respect to x gives

2C9ZW3Z%L + 2dzW3zzU = dze, (36)

and once with respect to z gives

2~Zti~zZt~ + 2dZq4dZq4 = ~,c,. (37)

Substituting (3I) into (37) gives

2dZudZZu – 2dzUdz21L = dze,. (38)

Eliminating dz% between (36) and (38) gives

1 13Zld,t, + C? ZL[L?.E,
8..26 = —

2 (dzu) 2 + (d.u) 2 “

Using (34) reduces (39) to

d.2bd.e, + 8Z263ZC,
13..’LL= —

~ ~r

Substituting (40) into (36) and using (34)

~,, = (d.tLa.er – d,udz,r)
z

2 e,

(39)

(40)

gives

(41)
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Differentiating (40) with respect to x gives

((3.24(3,6, + F)Zudz,r)
d.?,u = – d.q

2%2

and (41 ) with respect to z gives

Equating (42) and (43) and canceling the same terms on

both sides and using (31) to cancel terms which are iden-

tically zero gives

d.2L

[

(Le.)’ + (d.%)’
~ dz~e, + aa~c, – 1= o. (44)

, e,

Canceling 2e, in (44), e, # O, leaves two factors which

can be zero

And

azu = o. (46)

However, (46) is a trivial solution since from (31)

r?.% = o (47)

so dzu is constant. Therefore from (34) G(x, z) is con-

stant. But this trivial solution is also contained in (45).

Examination of the wave equation, (24), shows that a

uniformly filled waveguide with a capacitivity e,, can be

treated in the u, v coordinate system as a uniform wave-

guide with the capacitivity of vacuum, but with the

dimensions increased by the square of the relative

capacitivity.

From (34) the general solution to (45) can be ex-

pressed in the form

since

The general solution of (45) can be expressed as

where j’ is any complex analytic function.

The partial differential equation (45) has applications

other than to the problem under consideration. Accord-

ing to (50), the square of the absolute value of any ana-

lytic complex function satisfies the partial differential

equation (45). For a waveguide with a two dimensional

variation of the dielectric medium (45) can serve as a

criterion to determine if an equivalent curved wall

wavcguide with a uniform medium does exist.

D. Nonunifovrn Dielectric Loaded Straight Wall Wave-

guides Which Have an Equivalent Uniform Curved Wall

Waveguide and a Sepa~able Wave Equation

A relatively simple form of solution for wave propa-

gation in waveguides with nonuniform dielectric media

can be obtained if the wave equation (23) is separable.

This is possible for dielectric media which have the

form

6?.(.V,z) = %(z) + e,.(z). (.51)

The solution for a dielectric function of this form reduces

(23) to solving two ordinary second order differential

equatiorls with variable coefficients.

With the aid of (45) the types of variable dielectric

waveguides that have a separable wave equation and an

equivalent uniform curved wall waveguide can be de-

termined. The number of such waveguides is limited and

it has been showny that uniform waveguides with curved

walls coincident with coordinate surfaces of confocal

conic section coordinate systems lead to a separable

wave equation. This result is derived here based on (45)

and constitutes an alternative derivation of the condi-

tions for separability.

Substituting (51) into (45) gives

(6,. + d(l?.zer. + d.’%.) – (a.%)’ – (d.%)’ = 0. (.52)

Differentiating (52) with respect to x and simplifying

gives

((.,. + ,rz)ac’,.. + (3.,,. (8.’,,. – d.’,,.) = o. (53)

Differentiating (52) once with respect to z and simplify-

ing gives

(Crz + Gz)dz’%z + az%(d.’% – 5s’%.) = o. (54)

Multiplying (53) by de,, and (53) by d~e,z and adding

gives

(~rz + %.) (azdz’c.. + ck.d.’cr.) = o. (55)

Since ths relative dielectric constant, ~,z + c.Z is unequa~

to zero cjnly the quantity in the brackets in (55) can be

equal to zero. Eq. (55) separates into the two ordinary

differential equations

d’e,z
—+62$;=0 (!;6)
dx’

and

dse,,
—–s’~=o
dz3 .

(57)

‘ P. hI. Morse and H. Feshback, “Methods of Theoretica~
Physics, ” L’IcGraw-Hill Book Company, Inc., New York, N. Y..
pp. 490–.508 ; 1953.
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where 62 is a real constant, and the partial differential in (65) gives

operators have been replaced with the ordinary differ-
CT= DeB”.

ential operators. Different solutions exist for (56) and
(70)

(57) when 8 = O and 8 # O and for 82 positive or negative. The corresponding function w which gives the coordi-

For 8=0 nates of the equivalent uniform waveguide

e,z=Ax2+Bx+C (58)
24B

C., =DZ2+EZ+F (59) w=— ~(6/2)r.

6

(71)

where A, B, C, D, E and Fare constant but are not inde- The coordinates for this case are circular cylindrical.
pendent since (58) and (59) have to also satisfy (52). For &# O but 6’ negative it follows from (56) and (57)

For 6 #O and 6Z positive
and from the symmetry of (52) with respect to x and z

x= A’cos6x+B’sin6x+C’ (60) that x and z can be interchanged in (65) and in (70). The

corresponding equations to (65) and (66) are
z = D( cosh 8Z + E’ sinh 6Z + F’ (61)

A

where A’, B’, C’, D!, E’,

independent.

For 8 = O substituting

comparing coefficients of

equation is obtained

a [COS6(Z + 2,) + cosh 8(x + xl)] (72)and F! are constants, but not
~r =

(58) and (59) into (52) and and

the same Dower the following

~=——”

‘=’.+’Z=A[(X++)2+(Z+3J21 ’62) ‘ic:z’s’n’+(’73)The coordinates are also hyperbolical cylindrical. The

The coordinates of the equivalent uniform waveguide

are found from

(63)

The coordinates of the equivalent uniform waveguide

are parabolic.

For 8%0 but positive proceeding in the same manner

as for 82= O the following equation is obtained after

some algebraic manipulations:

e, = + [COS6(% + XI)+ cosh ~(z + z,)]. (65)

The corresponding function w which gives the coordi-

nates of the equivalent uniform waveguide is

2

d

2A
w=— —

6
sin ~ (f + fl) (66)

Cos &xl

where

rl = xl + jz,. (67)

The corresponding coordinates are elliptical cylindri-

cal. Setting

tanh 13zl = 1 (68)

cosh 621
A =D

Cos 8X1
(69)

corresponding equations to (70) and (71) are

and

(75)

These coordinates are also circular cylindrical.

E. Straight Waveguide Loaded with Dielectric that Varies

in One Dimension and Their Equivalent Uniform Cumed

Wall Waveguides

The types of one dimensional variation of the capaci-

tivity which lead to an equivalent curved wall wave-

guide with uniform loading are considered next. If the

solution is known for the x variation it is also known for

the z variation except for a constant of integration be-

cause of the symmetry of (45) in x and z. The relative

capacitivity is taken as a function of x only in the prob-

lem treated, and hence the derivatives with respect to s

vanish, Thus (45) reduces to

Using the transformation

reduces (76) to

(77)

+2– Y2.
c %H=o ’78)
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One solution to (78) is y = O. From (77) this solution

corresponds to e,= constant which has been considered

before. The other solution to (78) is

y = cle,. (79)

Substituting (79) into (77) and solving the differential

equation gives

6,(*) = Ae”’ (80)

where A and a are constants.

From the symmetry of (45) a similar solution exists

for capacitivity as a function of z only

6,(Z) = lle~’ (80a)

where B and f? are constants.

Shown here with the aid of (45) is that the one dimen-

sional variations of the capacitivity given by (80) and

(80a) are the only one dimensional variations which have

an equivalent waveguide with a uniform dielectric con-

stant, and curved walls.

These two cases are analyzed in detail to illustrate

how the solution for the transformed waveguide is ob-

tained from the solution for one type of straight wave-

guide.

1) Propagation in a Rectangular Waveguide Contain-

ing Dielect~ic with a Longitudinal Exponential Variation

To treat this problem let

2L
~=— e–$(ln t2/2L)~ (81)

in E2

with

{=%+jz. (82)

From (81) and (34)

,,($, z) = C,”L. (83)

This section of the waveguide is transformed accord-

ing to (81) into a waveguide in the u, v coordinate sys-

tem that is a radial waveguide with a vacuum dielectric.

The equivalent waveguides are shown in Fig. 2. The

metal walls spaced X. apart in the x, z, coordinate sys-

tem are transformed into radial walls enclosing the

angle 2@o. From (81) and (82) the angle is given by

+o=lncg~. (84)

The solution of the wave equation for the radial wave-

guide shown in Fig. 2 (b) is known. The electric field E.

for the dominant TE1o mode is given by8

8 N. Marcuvitz, “Waveguide Handbook, ” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 93-96; 1953.

—T—

(a)

v

1 ---a$0

+:”— —– ————
--- $0

(b)

Fig. 2—(a) Rectangular wayeguide with an exponentially varying
dielectric in the longitudinal dimension. (b) Curved wall wave-
guide with uniform dielectric corresponding to waveguide in
Fig. 2(a).

where p is the radial coordinate & is given by (9), A

and B are constants, Jv and Y, are Bessel functions of

the first and second kind respectively of order

From (8 1), and (83) it follows that

p=lw]=~ <e,(z)

@ = ~ in C,X.

(86)

(87)

(88)

Substituting (84), (87), and (88) into (85) gives the elec-

tric field in the x, z coordinate system

‘(’72)‘=[AJV(%F)
(2p”L —_

+BYV )1~ /e,(z)COS 3. (89)
Xo

It can be readily shown that (89) is a solution to the

wave ecluation, (23), for the waveguide shown in

Fig. 2(a).

2) Propagation in Rectangldar Waveguide Containing

Dielectric with a Transverse Exponential Variation

To treat this problem let

The corresponding capacitivity from (36) to

(90)

(91)

The rectangular waveguide loaded with dielectric that

has the exponential variation in the transverse dimen-

sion is transformed by (90) into a circular waveguide

with metal walls at radii PI and PZ. The equivalent wave-

guides are shown in Fig. 3(a) and 3(b). From (90) the
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(b)

Fig. 3—(a) Rectangular waveguide with an exponentially varying
dielectric in the transverse dimension. (b) Curved wall waveguide
with uniform dielectric corresponding to waveguide in Fig. 3(a).

radii pl and PZ are given by

and

(92)

(93)

The angle @ in the circular waveguide determined from

(90) is

(94)

As z varies from – ~ to + ~ the angle + ranges over

successive Riemann surfaces.

The wave equation in the u, v cylindrical coordi-

nates is

The solution to this equation for the transformed wave-

guide is

E, = [Y~C(&p) F@.(&@,) – ~A(L%P)~Pc(API)]

. [~,-h~ + &&d] (96)

and the separation constant /3. is obtained from the con-

ditional equation

J,3,(P,P2) Y&(@DPl) – Y-?. (8UP2)J%(BUPI) = 0. (97)

Substituting the values for p, p,, p, and @ from (90),

(92), (93) and (94) into (96) and (97) gives the electric

field and the conditional equation for the nonuniform

dielectric waveguide. It can also be readily shown that

(96) with the above substitutions is a solution to the

wave equation (23) for a rectangular waveguide with an

exponential variation of the dielectric in the transverse

x dimension.

CONCLCTSIONS

1) The necessary conditions for propagation of inde-

pendent TEmm modes in nonuniform dielectric wave-

guides is that the capacitivity varies in the longitudinal

dimension only. Coupled TE.~ modes may propagate

(without generating T&f modes) if the capacitivity

varies in only one transverse dimension and in the longi-

tudinal dimension.

2) Certain curved wall waveguides with uniform

media when transformed by a conformal coordinate

transformation in straight wall waveguides with non-

uniform media satisfy the same wave equation and vice

versa. A derived partial differential equation, (45), for

the capacitivity of a straight wall waveguide deter-

mines the existence of an equivalent curved wall wave-

guide with a uniform medium.

3) For the two-dimensional dielectric variations given

by (51) the wave equation is separable and reduces to

two ordinary second order differential equations for each

independently propagating TE~o mode. Some of these

types of waveguides also have equivalent uniforinly

loaded curved wall waveguides. The curved walls are

located at confocal conic section coordinate surfaces.


