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Propagation of TE Modes in Nonuniform Waveguides®

H. ZUCKERT, MEMBER, IRE, AND G. I. COHN], SENIOR MEMBER, IRE

Summary—The conditions for TE mode propagation in rec-
tangular waveguides with nonuniform dielectric media are estab-
lished. An equation is derived for determining the capacitivity func-
tions which have equivalent curved waveguides with uniform dielec-
tric media. The types of variable dielectric waveguides which have
equivalent curved wall waveguides and a separable wave equation
are determined.

INTRODUCTION
ﬁ PPLICATION of waveguides loaded with non-

uniform dielectric material that varies in two

dimensions has been limited by fabrication dif-
ficulties. The development of ferroelectric materials
whose properties can be changed with the applica-
tion of a biasing field considerably extends the prac-
tical applications to which nonuniformly loaded wave-
guides may be put. Such waveguides are also of intrinsic
theoretical interest because of the mathematical tech-
niques involved.

Solutions of the wave equations for propagation in
nonuniform dielectric filled waveguides have been ap-
plied*~% to determine the propagating fields in uniformly
loaded curved waveguides by using conformal coor-
dinate transformations which transform curved wave-
guides into equivalent straight waveguides. The trans-
formed wave equation is similar to the wave equation
for propagation in a waveguide loaded with dielectric
that varies in two dimensions.

This paper is part of a study concerned with propaga-
tion in nonuniformly loaded rectangular waveguides.
The conditions for independent propagation of TE
modes in such waveguides are determined. An equation
is derived for determining which functional variations of
the capacitivity have equivalent curved guides with uni-
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form dielectric media. The types of equivalent wave-
guides which have a separable wave equation are also
determined. Solutions for the propagating waves in non-
uniformly-loaded straight-wall waveguide (where the
nonuniformity is a function of one dimension only) are
obtained.

A. Conditions for Independent Existence of Transverse
Electric Modes in a Nonuniform Dielectric Loaded Wave-
guide

The problem to be treated, illustrated in Fig. 1, is a
rectangular cross section cylindrical waveguide loaded
with a dielectric that varies in the transverse-x and the
longitudinal-z directions. The treatment is restricted to
the case for which the walls of the waveguide and the
dielectric have negligible loss.
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Fig. 1—Rectangular waveguide with dielectric that varies in the

longitudinal direction and in one transverse direction.

In the absence of space charge and conduction cur-
rent Maxwell’s induction equations for isotropic media
and for sinusoidal steady-state complex representation
are

V X H = jweE (1)
VX E=— jouH (2)
where

E and H are the electric and magnetic field intensities,
w and e are the inductivity and capacitivity (may be
functions of the three position coordinates %, ¥, 2).
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w = 2nf (3)
f = frequency.

Maxwell’s Gaussian equations reduce to
eV-E+ E-Ve =0 (4)
uV-H+ H-Viu = 0. (5
The problem under consideration is restricted to

homogeneous inductivity, hence (5) reduces to

V-H = 0. (6)

Obtaining separate equations for E and H from (1)
and (2), gives
Ve
V:H + <—> X (VX H) + B8.2¢H = 0 (1)

€
and
V:E — VV-E+ B,2¢E=0 )

where 3, is the propagation factor and

ﬁv = w\/;"_ve—; (9)

and ., and e, are the inductivity and capacitivity of
vacuum, €, is the relative capacitivity or dielectric
constant.

The conditions for the TE mode propagation are es-
tablished from (8). The z component of (8) is

VIE, — 3,(V-E) + B¢, L. = 0. (10)
For TE modes
E, = 0. (11)
This TE mode constraint reduces (10) to
9,V-E = 0. (12)
Integrating (12) gives
V-E = g(x, y) (13)
where g(x, y) is an arbitrary function of x and ».
For a uniformly loaded guide (4) reduces to
V-E* = 3,E* + 3,E,* = 0, (14)

At the junction between the uniform waveguide and
the nonuniform dielectric loaded guide the electric fields
E, and E, are the same on both sides of the boundary.
If the fields are identical, so are their transverse deriva-
tives. Therefore, at the junction, at 2 =2,

9,E + 9,E, = 0. (15)

Since g(x, y) does not vary with z and is zero at z=2,, it
is zero throughout the nonuniform dielectric region.
Hence, for a nonuniformly loaded waveguide which is
joined to a uniformly loaded waveguide and excited
from that guide with a TE mode,

glx,y) = 0. (16)
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For a TE mode, with g(x, ¥) zero in (13), (4) reduces to
(7

For all arbitrary variations of e(x, v, z) (17) can only be
satisfied if E, and E, are individually zero. Thus a TE
mode cannot independently exist if the guide is filled
with a dielectric that is an arbitrary function of position.
Nontrivial solutions of (17) can exist only under the
following conditions:

E-Ve = E, 0,6, + E,0,¢, = 0.

)= 19
N

MR 19
.

Lol = @

Conditional equation sets (18) and (19) have already
been derived for TE modes in waveguides where the di-
electric constant varies in the transverse dimension
only.8

Conditional equation set (20) is still satisfied if the
capacitivity varies in the 2z dimension and according to
(17) neither E, and E, has to be zero. TE,,, modes can
therefore be independently present in a waveguide
where the dielectric medium varies in the 2z dimension.
The fields in such a waveguide can be obtained in terms
of a product of three functions which are dependent on
x, ¥ and 2 respectively, with the functional dependence
on x and v the same as for uniform waveguides and the
z-dependent function can be obtained in terms of a sec-
ond order differential equation with variable co-
efficients.

In the succeeding sections nonuniform dielectric
loaded waveguides will be considered where the condi-
tional equation set (18) is fulfilled. Under these condi-
tions it follows from Maxwell’s equations that

H,=0 (21)
and from (15) and (18) that
d,E, = 0. (22)

The conditions specified by (18), (21), and (22) rule
out variation in the y direction; hence, only TE,,, modes
can be present. With the above conditions the equation
for H, (7), has the ¥y component equal to zero, and the
equation for E,, from (8) reduces to

02Ey + 0,Ey + Bote,(x, 5)E, = O. (23)

8 K. V. Malinowski and D. J. Angelokos, “Propagation in
Inhomogeneously Filled Waveguides,” University of California
Institute of Engineering Research, Berkeley, Calif., Ser. No. 60,
Issue No, 125; October, 1954.
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The vy component of the electric field satisfies (23), the
simplest equation, of the above set. A solution for F,,
which satisfies (23) and the boundary conditions, is suf-
ficient since the magnetic fields can be derived from it by
differentiation.

B. Conformal Coordinate Transformation

The partial differential equation (23) can be expressed
in the u, v-coordinate system by the transformation

(24)
(25)

u = u(x, 2)
v = v(%, 3)

where u(x, 2) and v(x, 2) are, for the time being, arbi-
trary functions.

Such a transformation generally converts the straight
boundaries of the waveguide at the metal walls into
curved boundaries. For an arbitrary transformation the
resulting partial differential equation in the # and » co-
ordinates would have a form more complex than (23).
However, it is shown subsequently that for certain vari-
ations of the dielectric medium the transformation (if
conformal) will transform the wave equation, (23), into
a wave equation for a waveguide with uniform dielectric.
The difference between the original and the transformed
problem is that the boundaries and the dielectric have
changed. The advantage of this method is that certain
solutions for propagation in curved waveguides with
uniform loading can be used as solutions to correspond-
ing nonuniform dielectric loaded straight wall wave-
guides. This method is the inverse of the method used in
solving certain waveguide problems with curved bound-
aries by transforming conformally the waveguide with
curved boundaries into a waveguide with straight
boundaries and a variable dielectric medium.?

In the new coordinate system the electric field E, is a

function of # and ».
E, = E,(u, ). (26)

If # and v are chosen so that they satisfy the Cauchy-
Riemann conditions

dptt = 0,0 X))
3.0 = — d,u (28)
then
(0:0)° + (9:00)* = (3:0)° + (d:1)* (29)
100 + 000 = 0 (30)
3+ 92u =0 (31)
3.2 + 3, = 0. (32)

Using (24) and (25) together with (27) through (32)
transforms (23) to

(02E, + 3,2E)[(0.2)2 + (0.1)2] + B.2e,(x, 2)Ey = 0. (33)
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If u satisfies the partial differential equation
(0=)° + (9.1)* = e(x, %) (34)
then the transformation (24) and (25) reduces (33) to
0Ey + 0,2Ey + BE, = 0 (35)

which is an equation for wave propagation in a vacuum
filled waveguide. For 8,=0, which corresponds to the
static case, (23) is Laplace’s equation and (33) obtained
by conformal transformation, is also Laplace’s equation.

Partial differential equation, (34), imposes a relation-
ship between the coordinate # and the coordinates x and
y. It follows from (29) that v(x, 2) also satisfies (34). The
preliminary cases studied were chosen by picking a co-
ordinate transformation and then finding the corre-
sponding dielectric variation. For a specified dielectric
variation the coordinate transformation is determined
from (34). Eqg. (34) is a nonlinear partial differential
equation of the first order which can be reduced to
a set of simultaneous ordinary differential equations of
the first order. However, only specific variations of the
dielectric medium e(x, 2) lead to a function which satis-
fies (34) and (31) simultaneously. These types of func-
tions for the dielectric medium are derived in the sub-
sequent section.

C. Partial Differential Equation for the Capacitivity
Required in a Straight-Wall Waveguide having the Same
Solution Uniformly Loaded Curved Wall Waveguide

The partial differential equation which ¢.(x, z) must
satisfy if the nonuniform loaded straight wall waveguide
is to have the same solution as the uniformly loaded
curved wall waveguide can be obtained from (31)
and (34).

Differentiating (34) once with respect to x gives

2040218 4 20,10, = g€, (36)
and once with respect to z gives
20,490 + 20,u3. 1 = J,¢,. (37)
Substituting (31) into (37) gives
20.410,.u — 20,102 = 9.€,. (38)
Eliminating d.% between (36) and (38) gives
1 9,u0.¢ -} 0,u0 ¢,
Byt = e o T (39)
2 (9.u)? + (8.u)°
Using (34) reduces (39) to
0,140 .6, -+ 0,240€,
.t = . (40)
e,
Substituting (40) into (36) and using (34) gives
(3,006, — 0,10 .€,)
dort = 2 TRTE (41)

2e,
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Differentiating (40) with respect to x gives
(3,40 .6, + 9.ud,€,)

arzz% = - a,ce,
2¢,2
0,210 6, + 3,10,.¢, + 3.0 ,6, + I,ud e,
+ (42)
2e,
and (41) with respect to z gives
(0,206, — 3,13 €,)
az:zu = — aze,
2¢,?
0,140 56, + 0,240, .€, — 9110 .6, — I 1D %€,
S C X))

2e,

Equating (42) and (43) and cancelling the same terms on
both sides and using (31) to cancel terms which are iden-

tically zero gives
d,u

(azer) 2 + (a zer) 2

€r

[aﬁer -+ 9.%, — :I =0. (44)

&

Cancelling 2¢, in (44), 30, leaves two factors which
can be zero

(9:6)% + (9.¢,)?

d.%e, + 9.%, — = Q. (45)
€r
And
d.u = 0. (46)
However, (46) is a trivial solution since from (31)
Aty =0 47

so d,u is constant. Therefore from (34) ¢.(x, z) is con-
stant. But this trivial solution is also contained in (45).

Examination of the wave equation, (24), shows that a
uniformly filled waveguide with a capacitivity e,, can be
treated in the #, » coordinate system as a uniform wave-
guide with the capacitivity of vacuum, but with the
dimensions increased by the square of the relative
capacitivity.

From (34) the general solution to (45) can be ex-
pressed in the form

& = (0,1 + 70.08)(d.00 — jO 1) (48)
since
dw
F@§) = —— = du + jov = dou — jO.11. (49)
dg
The general solution of (45) can be expressed as
e(x, ) = flx + jo)f(x — jz) (50)

where f is any complex analytic function.

The partial differential equation (45) has applications
other than to the problem under consideration. Accord-
ing to (50), the square of the absolute value of any ana-
lytic complex function satisfies the partial differential
equation (45). For a waveguide with a two dimensional
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variation of the dielectric medium (45) can serve as a
criterion to determine if an equivalent curved wall
waveguide with a uniform medium does exist.

D. Nonuniform Dielectric Loaded Straight Wall Wave-
guides Which Have an Equivalent Uniform Curved Wall
Wavegiide and a Separable Wave Equation

A relatively simple form of solution for wave propa-
gation in waveguides with nonuniform dielectric media
can be obtained if the wave equation (23) is separable.
This is possible for dielectric media which have the
form

(%, 2) = e.(x) + €.(2).

The solution for a dielectric function of this form reduces
(23) to solving two ordinary second order differential
equations with variable coefficients.

With the aid of (45) the types of variable dielectric
waveguides that have a separable wave equation and an
equivalent uniform curved wall waveguide can be de-
termined. The number of such waveguides is limited and
it has been shown? that uniform waveguides with curved
walls coincident with coordinate surfaces of confocal
conic section coordinate systems lead to a separable
wave equation. This result is derived here based on (45)
and constitutes an alternative derivation of the condi-
tions for separability.

Substituting (51) into (45) gives

(er:c + er.f)(al2erz + azﬁerz) - (6161‘:0)2 - (axerz)z = 0

Differentiating (52) with respect to x and simplifying
gives

(51)

(52)

(‘-rz -+ Erz)aa:serx + azfrx(azzerz - 63:26)'::) = 0, (53)

Differentiating (52) once with respect to z and simplily-
ing gives

(('rm -+ frz)azgfrz -+ azerz(az2€rz - 82257‘2) = 0. (54)

Multiplying (53) by 9d.¢,, and (53) by 0.¢., and adding
gives

(Erz + frz) (az51z6z36m + axerxazgfrz) = 0. (55)
Since the relative dielectric constant, €., ¢€,. is unequal
to zero only the quantity in the brackets in (55) can be
equal to zero. Eq. (55) separates into the two ordinary
differential equations

d¥en \ ders

+ 6 =0 56)
dx? dx (56)
and
d*e,s de.
A S (57)
dz® dz

TP. M. Morse and H. Feshback, “Methods of Theoretical
Physics,” McGraw-Hill Book Company, Inc., New York, N. Y.,
pp. 490-508; 1953.



206

where 82 is a real constant, and the partial differential
operators have been replaced with the ordinary differ-
ential operators. Different solutions exist for (56) and
(57) when 6 =0 and 6§50 and for §* positive or negative.
For 6=0

(58)
(59)

€¢s = Ax*+ Bx+ C
&: = D2+ Ez+ F

where 4, B, C, D, E and F are constant but are not inde-
pendent since (58) and (59) have to also satisfy (52).
For 60 and 62 positive

x = A’ cos éx + B’ sin éx + C’
z = D' cosh 6z + E’ sinh 8z + F’

(60)
(61)

where 4’, B', ', D', E’, and F’ are constants, but not
independent.

For §=0 substituting (58) and (59) into (52) and
comparing coefhicients of the same power the following
equation is obtained

= = A BY £y 62
& = €zt €, = |:<x+52> +<Z+2A>] ( )

The coordinates of the equivalent uniform waveguide
are found from

A
w=/‘/z(§'+§'1>2 (63)
where
_ L2 E (64)
S= T

The coordinates of the equivalent uniform waveguide
are parabolic.

For 60 but positive proceeding in the same manner
as for 62=0 the following equation is obtained after
some algebraic manipulations:

[cos 8(x + x1) + cosh 6(z + z,)].

(65)

€ =

cos 6x1

The corresponding function w which gives the coordi-
nates of the equivalent uniform waveguide is

24

cos 60Xy

_ 2 .8 66
w-—; Sln3(§+§1) (66)

where
5‘1 =M _I—jZl. (67)

The corresponding coordinates are elliptical cylindri-
cal. Setting

tanh 8z, = 1 (68)
cosh 0z
—— =D (69)
cos 64,
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in (65) gives
& = Deé's,

(70)

The corresponding function w which gives the coordi-
nates of the equivalent uniform waveguide

24/ D
6

cGIDE,

W (71)
The coordinates for this case are circular cylindrical.
For 80 but 2 negative it follows from (56) and (57)
and from the symmetry of (52) with respect to x and z
that x and z can be interchanged in (65) and in (70). The
corresponding equations to (65) and (66) are

A
6 = [cos 8(z + 21) + cosh 8(x + )]

coSs 621

(72)
and

—

cos 62

2 8
w=— sinj ¢+ 0. (73)

The coordinates are also hyperbolical cylindrical. The
corresponding equations to (70) and (71) are

€. = Deb>

(74)

and

e]‘sf/z.

(75)

These coordinates are also circular cylindrical.

E. Straight Waveguide Loaded with Dielectric that Varies
in One Dimension and Their Equivalent Uniform Curved
Wall Waveguides

The types of one dimensional variation of the capaci-
tivity which lead to an equivalent curved wall wave-
guide with uniform loading are considered next. If the
solution is known for the x variation it is also known for
the z variation except for a constant of integration be-
cause of the symmetry of (45) in x and 2. The relative
capacitivity is taken as a function of x only in the prob-
lem treated, and hence the derivatives with respect to s
vanish. Thus (45) reduces to

1
2, — — (8¢)2 = 0,

(76)
€
Using the transformation
Y = 06 = i & (77)
dx
reduces (76) to
y%——i—y2=y<%—éy>=0. (78)
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One solution to (78) is y=0. From (77) this solution
corresponds to € =constant which has been considered
before. The other solution to (78) is

(79)

Y = ae.

Substituting (79) into (77) and solving the differential
equation gives

e(2) = Aeo (80)

where 4 and « are constants.
From the symmetry of (45) a similar solution exists
for capacitivity as a function of z only

e(z) = Bef (80a)

where B and 8 are constants.

Shown here with the aid of (45) is that the one dimen-
tional variations of the capacitivity given by (80) and
(80a) are the only one dimensional variations which have
an equivalent waveguide with a uniform dielectric con-
stant, and curved walls.

These two cases are analyzed in detail to illustrate
how the solution for the transformed waveguide is ob-
tained from the solution for one type of straight wave-
guide.

1) Propagation in a Rectangular Waveguide Contain-
ing Dielectric with a Longitudinal Exponential Variation

To treat this problem let
2L

w = g7iIn /2138 (81)
In e
with
f=a+jz (82)
From (81) and (34)
&(x, 2) = e”/". (83)

This section of the waveguide is transformed accord-
ing to (81) into a waveguide in the u, v coordinate sys-
tem that is a radial waveguide with a vacuum dielectric.
The equivalent waveguides are shown in Fig. 2. The
metal walls spaced x, apart in the x, 3, coordinate sys-
tem are transformed into radial walls enclosing the
angle 2¢¢. From (81) and (82) the angle is given by

Xo

= In eg—— 84
Do 624L (84)

The solution of the wave equation for the radial wave-
guide shown in Fig. 2(b) is known. The electric field £,
for the dominant TE;, mode is given by?®

E, = [47.(8.0) + BY.(8.p)] cos (33) (85)

0

8 N. Marcuvitz, “Waveguide Handbook,” McGraw-Hill Book
Co., Inc., New York, N. Y., pp. 93-96; 1953.
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Fig. 2-—(a) Rectangular waveguide with an exponentially varying
dielectric in the longitudinal dimension. (b) Curved wall wave-
%L.ude (Wlth uniform dielectric corresponding to waveguide in

ig. 2(a).

where p is the radial coordinate 8, is given by (9), 4
and B are constants, J, and Y, are Bessel functions of
the first and second kind respectively of order

s

D= 86
200 (86)
From (81), and (83) it follows that
2L -
p=lw| =— Vel (87)
ln €9
¢ =1 1n ex. (88)

Substituting (84), (87), and (88) into (85) gives the elec-
tric field in the %, 2 coordinate system

28,
E,(x,2) = I:AJ,, (—B—e— v e,(z))

In

B
+ BI@(1 Ori \/er(z)>:| cos— -

n e Xo

(89)

It can be readily shown that (89) is a solution to the
wave equation, (23), for the waveguide shown in
Fig. 2(a).

2) Propagation in Rectangular Waveguide Containing
Dielectric with a Transverse Exponential Variation

To treat this problem let

ZX()
w = e(ln 62/2xn)§‘_ (90)
In €2
The corresponding capacitivity from (36) to
x
er(x> = €2 ) (91)

¥

<

The rectangular waveguide loaded with dielectric that
has the exponential variation in the transverse dimen-
sion is transformed by (90) into a circular waveguide
with metal walls at radii py and ps. The equivalent wave-
guides ace shown in Fig. 3(a) and 3(b). From (90) the
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(b)

Fig. 3—(a) Rectangular waveguide with an exponentially varying
dielectric in the transverse dimension. (b) Curved wall waveguide
with uniform dielectric corresponding to waveguide in Fig. 3(a).

radii p; and p; are given by

2~\¢0
pr=|w| = (92)
ln €3
and
2x0€s
po= | = (93)
ln €2

The angle ¢ in the circular waveguide determined from
(90) is

In €2

q’) =
2,&’0

3. 94

As z varies from — «© to + « the angle ¢ ranges over
successive Riemann surfaces.

The wave equation in the #, v cylindrical coordi-
nates is

1 1
PE, + — E, + — 0%E, + B,°E, = 0. (95)
pr

p
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The solution to this equation for the transformed wave-
guide is

Z':!/ = []ﬂc(ﬂvp) Yﬁc(IBvPZ) - Yﬁc(ﬂvp>]5c(ﬁvpl)]

[Ae bt 4 Beheo) (96)

and the separation constant 8, is obtained from the con-
ditional equation

J3:(8002) Yo, (Bop1) — V5.(Bop2) T2, (Bepr) = 0. (97)

Substituting the values for p, p1, p2 and ¢ from (90),
(92), (93) and (94) into (96) and (97) gives the electric
field and the conditional equation for the nonuniform
dielectric waveguide. It can also be readily shown that
(96) with the above substitutions is a solution to the
wave equation (23) for a rectangular waveguide with an
exponential variation of the dielectric in the transverse
x dimension.

CONCLUSIONS

1) The necessary conditions for propagation of inde-
pendent TE,, modes in nonuniform dielectric wave-
guides is that the capacitivity varies in the longitudinal
dimension only. Coupled TE,, modes may propagate
(without generating TM modes) if the capacitivity
varies in only one transverse dimension and in the longi-
tudinal dimension.

2) Certain curved wall waveguides with uniform
media when transformed by a conformal coordinate
transformation in straight wall waveguides with non-
uniform media satisfy the same wave equation and vice
versa. A derived partial differential equation, (45), for
the capacitivity of a straight wall waveguide deter-
mines the existence of an equivalent curved wall wave-
guide with a uniform medium.

3) For the two-dimensional dielectric variations given
by (51) the wave equation is separable and reduces to
two ordinary second order differential equations for each
independently propagating TE,, mode. Some of these
types of waveguides also have equivalent uniformnly
loaded curved wall waveguides. The curved walls are
located at confocal conic section coordinate surfaces.




